Polynomial and matrix computations. volume 1:Fundamental algorithms
نویسندگان
چکیده
منابع مشابه
Polynomial and Matrix Computations Volume 1: Fundamental Algorithms (Dario Bini and Victor Pan)
Article: The past few decades have produced a wealth of interesting and useful work in the area of algorithms for algebraic, symbolic, and numerical computing. Unfortunately, there has been a huge void in the area of books summarizing and bringing together the core results of algebraic computation, with the two main exceptions being Borodin and Munro's excellent book The Computational Complexit...
متن کاملFast Matrix Polynomial Computations
Pour une matrice polynomiale P(x) de degr e d dans Mn;n(Kx]), o u K est un corps commutatif, une r eduction a la forme normale d'Hermite peut ^ etre calcul ee en O ~ (M(nd)) op erations arithm etiques, si M(n) est le co^ ut du produit de deux matrices n n sur K. De plus, une telle r eduction peut ^ etre obtenue en temps parall ele O(log +1 (nd)) en utilisant O(L(nd)) processeurs, si le probl em...
متن کاملFast Error-free Algorithms for Polynomial Matrix Computations
Matrices of pol nomials over rings and fields provide a unifying framework $r many control system design problems. These include dynamic compensator design, infinite dimensional systems, controllers for nonlinear systems, and even controllers for discrete event s stems. An important obstacle for utilizing these owerful matiematical tools in practical applications has been &e non-availability of...
متن کاملNumerical Stability of Block Toeplitz Algorithms in Polynomial Matrix Computations
We study the problem of computing the eigenstructure of a polynomial matrix. Via a backward error analysis we analyze the stability of some block Toeplitz algorithms to obtain this eigenstructure. We also elaborate on the nature of the problem, i.e. conditioning and posedness. Copyright c ©2005 IFAC.
متن کاملSolving Polynomial Systems by Matrix Computations
Two main approaches are used, nowadays, to compute the roots of a zero-dimensional polynomial system. The rst one involves Grrbner basis computation, and applies to any zero-dimensional system. But, it is performed with exact arithmetic and, usually, big numbers appear during the computation. The other approach is based on resultant formulations and can be performed with oating point arithmetic...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Computational and Applied Mathematics
سال: 1994
ISSN: 0377-0427
DOI: 10.1016/0377-0427(94)90262-3